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Fitting Curves

A correctly specified model require that the
function linking x-variables and y-variable is true
to what really exist: is the relationship linear?

» Data can be inspected by means of band
regression or smoothing

» The theory of causal impact can specify a non-
linear relationship

» For phenomena that cannot be represented by a
line we shall present some alternatives

— Curvilinear regression
— Non-linear regression

Spring 2010 © Erling Berge 2010 3

Band regression

« Can be used to explore how the
relationship among the variables actually
appears

 |If we can see a non-linear underlying trend
of the data we must through
transformations or use of curves find a
form for the function better representing
the relationship

Spring 2010 © Erling Berge 2010 4
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Pollution at different depths in
sediments outside the coast of NH

e Pollution
measured by the
ratio
chromium/iron at o °
different depths of 2 o
various sediment
samples

* Is the relationship
linear? °o 0
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Medians of 5 bands: rate of chromium/iron in
sediments outside the coast of NH

000000

@ T

CR/FE RATIO

- ==

2 3 )
DEPTH IN CM (Banded)

The relationship is obviously non-linear
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Transformed variables

« Using transformed variables makes a regression
curvilinear. The transformation makes the original
curve relationship into a linear relationship

* This is the most important reason for a transformation

» At the same time transformations may rectify several
other types of statistical problems (outliers,
heteroscedasticity, non-normal errors)

e Procedure:

— Choose an appropriate transformation and make new transformed
variables

— Do a standard regression analysis with the transformed variables

— To interpret the results one usually will have to transform back to the
original measurement scale

Spring 2010 © Erling Berge 2010 7

The linear model

K -1
Yi = [, +Z:Bjxji T &
=1

¢ In the linear model we can transform both x- and
y- variables without any consequences for the
properties of OLS estimates of the parameters

* OLS is a valid method as long as the model is
linear in the parameters

Spring 2010 © Erling Berge 2010 8
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Curvilinear Models

» Practically speaking this is regression with
transformed variables

» We shall take a look at how different
transformations provide different forms for
the variable relations

— Semi-logarithmic curves
—Log-Log curves

— Log-reciprocal curves

— Polynomials (2 and 3 order)

Spring 2010 © Erling Berge 2010 9

Semilog curves Fig 5.2 in Hamilton
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Log-log curves Fig 5.3 in Hamilton

In(y)=5+01.8In(x)
In(y)=5+1In(x)

In(y)=5+0.2In(X)

© Erling Berge 2010

In(y)=5-0.2In(x) &
2 4 6 8 P ® 1 15 2 5
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Log-reciprocal curves Fig 5.4 in Hamilton

\
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|
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In(y)=0.1+0.2/x The horizontal lines give the value

In(y)=0.5-1.5/ of y when x grows towards infinity:
Horizontal line through (0, 1.105) the asymptote for y

Horizontal line through (0, 1.649)
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Second order polynomials Fig 5.5 in Hamilton

y=150+8%-0.2x2
y=150-8x+0.2x"2

Spring 2010 © Erling Berge 2010 13

Third order polynomials Fig 5.6 in Hamilton

T T T T T T T T
D D D ls) (3]
D

y=400+8x-0.7x"2+0.01x"3
y=50-8x+0.7x"2-0.01x"3

Spring 2010 © Erling Berge 2010 14

© Erling Berge 2010 7



Ref.: Spring 2010
http://www.svt.ntnu.no/iss/Erling.Berge/

Choice of transformation
» Scatter plot or theory may provide
advice

» Otherwise: transformation to
symmetry gives the best option

* The regression reported in table 3.2
in Hamilton proved to be problematic

« Regression with transformed
variables can reduce the problems

Spring 2010 © Erling Berge 2010 15

Choice of transformation in table 3.2 in Hamilton

Y = Water use 1981 Y*=Y03 provides approximate symmetry
Xl = Income X *= X,93 provides approximate symmetry
X, = Water use 1980 X,*= X,93 provides approximate symmetry
)(3 = Education Transformations are inappropriate

- ; Transformations do not work for dummies
X4 = Pensioner

X5 = # people in 1981 Xg*=In(X;) provides approximate symmetry

X6 = Change in # people Xg = X5 — X, (= # people in 1980)

X7 = Relative change in #people X7*=1n (Xs/Xo)

Spring 2010 © Erling Berge 2010 16
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Regression with transformed variables
Tab 5.2 in Hamilton

Dependent Variable: Std.
(Wateruse81)03 B Err t Sig.
(Constant) 1,856 ,385 4,822 ,000
Income?-3 ,516| ,130| 3,976 ,000
Wateruse80°-3 ,626| ,029| 21,508 ,000
Education in Years -036| ,016| -2,257 ,024
Retired? , 101 ,119 ,852 ,395
Ln(# of people81) ,715| ,110 6,469 ,000
Ln(people81/people80) ,916| ,263 3,485 ,001
Spring 2010 © Erling Berge 2010 17

Table 3.2 (Hamilton p74)

Dependent Variable: Std.

Summer 1981 Water Use B Error t Sig. Beta
(Constant) 242220 | 206.864 | 1.171| .242
Income in Thousands 20.967 3.464 6.053 | .000 .184
Summer 1980 Water Use 492 .026| 18.671|.000 || .584
Education in Years -41.866 | 13.220| -3.167|.002 || -.087
Head of house retired? 189.184 | 95.021| 1.991|.047|| .058
# of People Resident, 1981 | 248.197 | 28.725| 8.641|.000 || .277
Increase in # of People 96.454| 80.519| 1.198|.232|| .031

How do we interpret the coefficient of "Increase in # of People”

What leads to less water use after the crisis?
© Erling Berge 2010
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Residual against predicted Y

© Erling Berge 2010

Unstandardized Residual

Unstandardized Residual

Based on the regression in table 3.2 in Hamilton

200000000  aocoo. .0oooo  sooo. 00000

Unstandardized Predicted Value

Spring 2010 © Erling Berge 2010 19

Other consequences of the
transformations

Two cases with large influence on the
coefficient for income (large DFBTAS) do
not have such influence (fig 4.11 and 5.9)

One case with large influence on the
coefficient for water use in 1980 do not
have that large influence (fig 4.12 and 5.10)

Transformation to symmetrical distributions
will often solve many problems — but not
always

And it creates a new one: interpretation

Spring 2010 © Erling Berge 2010 20
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Interpretation

 The model estimate now looks like this

y°? =1.856 +0.516x%° +0.626x%* — 0.036X,,

X..
+0.101x,;, + 0.715In(x,;) + 0.916 In(—-
Xoi
» The interpretation of the coefficients are not so
straightforward any more. For example: the
measurement units of the parameters have been
changed

» The simplest way of interpreting is to use
conditional effect plots

Spring 2010 © Erling Berge 2010 21

Conditional effect plot

» Should be used to study the relationship
between the dependent variable and one
x-variable with the rest of the x-variables
given fixed values

» Typically we are interested in the
relationship x-y when the other variables
are given values that

— Maximizes y
— Are averages values of of the x-variables
— Minimizes y

Spring 2010 © Erling Berge 2010 22
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Example based on the regression in table 3.2 in Hamilton
Dependent Variable: Summer Unstandardized

1981 Water Use Coefficients

B Std. Error t Sig.
(Constant) 242,220| 206,864 | 1,171 242
Summer 1980 Water Use 492 ,026 | 18,671| ,000
Income in Thousands 20,967 3,464| 6,053| ,000
Education in Years -41,866| 13,220| -3,167| ,002
head of house retired? 189,184 95,021| 1,991| ,047
# of People Resident, 1981 248,197 28,725| 8,641| ,000
Increase in # of People 96,454 | 80,519| 1,198 ,232
Spring 2010 © Erling Berge 2010 23
To produce conditional effect plots it is useful to
have a table of minimum, maximum and average
variable values
N | Minimum | Maximum | Mean
Summer 1981 water use 496 100 10100 | 2298,39
Summer 1980 water use 496 200 12700 | 2732,06
Income in thousands 496 2 100 23,08
Education in years 496 6 20 14,00
Head of household retired? 496 0 1 .29
# of people resident, 1981 496 1 10 3,07
Relative increase in # of people 496 -3 3 -,04
# People living in 1980 496 1 10 3,11
Spring 2010 © Erling Berge 2010 24
12
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The equation

« Estimated Y = 242,22 + 0,492X; + 20,967X, -
41,866X; + 189,184X, + 248,197X; + 96,454 X,

« Maximizing the effect of X; on Y require
maximum of X, , X, , X5, Xg and minimum of X,

» Average values of the effect of X; on Y is
obtained by inserting average values of X, , X5,
Xy Xg, Xg

« Minimizing the effect of X; on Y require minimum
of X;, X5, X4, X5, Xg and maximum of X,

Spring 2010 © Erling Berge 2010 25

6000

4000

2000

2000 4000 6000

-4000

Y =242.22 + 042X + 2096710 - 41.866<7 + 180.184x1 + 248.197%5 + 96.454x1
Y =242.22 + 0492X + 20.967%1 - 41.806x18 + 189.184<0 + 248, 197x1 + 96.4540
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When x is dummy coded

» Estimated Y = 242,22 + 0,492X, + 20,967X, -
41,866X; + 189,184X, + 248,197X; + 96,454 X,

« Estimated Y = constant + 189,184X,
— X, can take the values of 0 or 1

Y = constant

Y = constant + 189,184

X,=0 X=1

Spring 2010 © Erling Berge 2010 27

Water usage according to income controlled

for the effect of other variables

2400

Fig 5.11 Hamilton

Relationship when other variables
have average values

1600

yP3=1.856+0.626(2732)">-0.036(14)+0.101(0.294)+0.715In(3.07)+0.916(In(3.07)-n(3.11))+0.516(9 >3

© Erling Berge 2010
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Which plots might be of interest?

* The relationship between water usage and
income controlled for the effect of other variables
— Those minimizing water usage
— Those maximizing water usage
— Average values

1 P(1.856+0.626(200)"0.036(20)+0.101(0)40.725I(2)+0.916(n(2)n(10) #0526
2. (0.856+0.626(12700)"0.036(6}+0.01(1)+0.705n(10)0.816n(10)n(L) #0516
3 (1.856+0.626(2732)"0.036(141+0.101(0.291+0.705n(3.07)+0.916(m(3.07)4n(3.10) 05261

Spring 2010 © Erling Berge 2010 29

Comparing three types of usage

14000
1200 \Maximum

0 Average

> Minimum\

20 30 40 50 €

Relationship between water usage and income Fig 5.12 in Hamilton
Spring 2010 © Erling Berge 2010 30
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The role of the constant in the plot

« The only difference between the three curves is
the constant (konst)
— In the maximum curve: (konst) = 14.046
— In the minimum curve: (konst) = 4.204
— In the average curve: (konst) = 8.507

y;”? = (konst)+0.516x;"

» The effect of income varies with the value of (konst)

* When we transform the dependent variable all
relationships become interaction effects

Spring 2010 © Erling Berge 2010 31

Comparing effects

» For some relationships the standardized
regression coefficient can be used to
compare effects, but it is sensitive for
biased estimates of the standard error

« A more general method is to compare
conditional effect plots where the scaling
of the y-axis is kept constant

Spring 2010 © Erling Berge 2010 32
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Income ] Pensioner
# people
1980 water use
“ education Relative change in # people
e
Fig 5.13 Hamilton
Spring 2010 © Erling Berge 2010 33

Non-linear models

 If we do not have a model that is linear in the
parameters other techniques than OLS are
needed to estimate the parameters

* One may find two types of arguments for such
models
— Theory about the causal mechanism may say so
— Inspection of the data may point towards one

particular type of model
» We shall take a look at

— Exponential models
— Logistic models
— Gompertz models

Spring 2010
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Exponential growth and decay
Fig 5.14 in Hamilton

204
159

10

y=25exp(-0.03x)
y=4exp(0.02x)

Spring 2010 © Erling Berge 2010 35

Negative exponential curves Fig 5.15 in Hamilton

y=10(1-exp(-0.07x))
2 y=10(1-exp(-0.02x))
1 Horizontal line through (0, 10)

T T T
20 40 60 80 14
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To-term exponential curves Fig 5.16 in Hamilton

Y=(5oers) (eX(-0.04x)-exp(-0.05x))

y=(5oeear) (exp(-0.11%)-exp(-0.05X))

Spring 2010 © Erling Berge 2010 37

Logistic models

« The logistic function is _ a
written 1+y exp(—Bx)

» As x grows towards o
infinity y will approach o ¢ Logistic models are
« When x declines appropriate for many

towards minus infinityy ~ Phenomena
will approach 0 — Growth of biological
populations

— Scattering of rumours
— Distribution of illnesses

Spring 2010 © Erling Berge 2010 38
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Logistic curves Fig 5.17 in Hamilton

Y=a

£
20q

15] 5

Y= 0ep01)
%

Y= T 0012
%

Y=Tr 000009
Horizontal line through (0, 25)

P L

URY

* v determines where growth starts
* B determines how fast the growth is

Spring 2010 © Erling Berge 2010 39

Logistic probability model

 Ifitis determined that a=y=1y will vary between
0 and 1 as x goes from minus infinity to plus
infinity

 Logistic curves can then be used to model
probabilities

1
T exp(—Bx,) i

Spring 2010 © Erling Berge 2010 40
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Gompertz curves

« Gompertz curves are sigmoid curves like the
logistic, but growth increase and growth reduction
occur at different rates. Hence they are not
symmetric

_ppBX
y=oe " +¢

» Parameters a, vy, and 3 have the same
interpretation as in the logistic model

Spring 2010 © Erling Berge 2010 41

Gompertz curves Fig 5.18 Hamilton

20

; y=25exp(-exp(-0.12x))
] y=25exp(-20exp(-0.12x))
1 y=25exp(-20exp(-0.06X))
Horizontal line through (0, 25)
f ‘ » ‘ o ‘ ® ‘ o ‘ i
Spring 2010 © Erling Berge 2010 42

Spring 2010

21



Ref.:

http://www.svt.ntnu.no/iss/Erling.Berge/

© Erling Berge 2010

* The criterion of fit is still minimum RSS

Estimation of non-linear models

* It is uncommon to find analytical
expressions for the parameters. One has
to guess at a start value and go through
several iterations to find which parameter
value will give minimum RSS

» Good starting values are as a rule

Spring 2010

necessary, and everything from theory to
inspection of data are used to find them

Spring 2010

© Erling Berge 2010
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Per cent women with at least 1 child according to the
woman’s age and year of birth (England og Wales)

1920|1930|1940|1945|1950| 1955|1960 | 1965
15 0 0 0 0 0 0 0 0
20 7 9 13| 17| 19| 18| 13| 11
25| 39| 48| 59| 60| 53| 45| 39 -
30 67| 75| 82| 82| 75| 68 - -
35/ 76| 83| 87| 88| 83 - - -
40| 78| 86| 89| 90 - - - -
45 -1 86| 89 - - - - -

Spring 2010

© Erling Berge 2010
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Estimating Gompertz-models for cohorts (1)
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40,00

20,004

0,00
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Y= 79.8exp(-
Y= per cent W

X= age
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(O >=1CHILD
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ues:

161.2exp(-0.26x))
ith at least 1 child

T
15,00

T
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T
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T
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T
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Estimating Gompertz-models for cohorts (2)

100,00

00000000
Ooaooo

80,00 o 6000000000
OO

60,00 [e]

o 1920 ang
estimate

° Y=79.8¢e
Y=90.4¢e

40,00 o

20,00
Y= per c¢

OO

o
000000080

X=age

O Predicted Values
WOMEN'S AGE

1 1945 cohorts,

] values
Xp(-461.2exp(-0.26x))
Xp(-468.1exp(-0.28x))

ent with at least 1 child

0,00

T T T T T
10,00 20,00 30,00 40,00 50,00
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Model estimation and fit

» To evaluate a theoretically developed model

» To predict y within or outside the observed
range of variation for x

» Substantial or comparative interpretation of
the parameters of the model

— On cohorts that are not finished with their births
(thus predicting outside the observed range of x)

— We can use the model to compare parameter
values of different cohorts

Spring 2010 © Erling Berge 2010 47

Parameter interpretation
Table 5.6 Hamilton

Cohort |o =upper limit |y="7? B = growth speec
1920 |79.8 461.2 0.26
1930 |86.5 538.0 0.27
1940 [89.1 942.0 0.31
1945 |90.4 468.1 0.28
1950 |87.5 144.9 0.23
1955 |88.9 60.3 0.18

Spring 2010 © Erling Berge 2010 48
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The process of entry into first marriage

Gudmund Hernes

178 American Sociological Review, 1972, Vol 37(April): 173-182
R % married
90,
804
701 Figure 1
WHITE FEMALE 1520-24
&0 Observed
..... Calculated
50
" Predicted by a non-
a0 homogenous diffusion model
20
10
(1] Age
15 17 19 21 23 25 27 2 a a3 as a7
Spring 2010 © Erling Berge 2010 49

Birth rates in Sunndal, Meraker, Verran, and Rana
1968-71

. » Estimated with a
. Hadwiger
VA function

/ \ « Ref.:. Berge,

TS Rrc LT FoniTtohins £ tat, L et i
Senal, eslie, S 5 Kk e 31

]

*
L

O liaiarian,

Erling. 1981.
The Social
Ecology of
Human Fertility
in Norway 1970.
Ph.D.
Dissertation.
Boston: Boston
University.

T & ¥ 3 voLo:

¥
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Conclusions of chapter 5 (1)

« Data analysis often starts with linear models.
They are the simplest.

» Theory or exploratory data analysis (band
regression, smoothing) can tell us if curvilinear or
non-linear models are needed

« Transformation of variables give curvilinear

regression. This can counteract several problems:

— Curvilinear relationships
— Case with large influence
— Non-normal errors

— Heteroscedasticity

Spring 2010 © Erling Berge 2010 51

Conclusions of chapter 5 (2)

* Non-linear regression use iterative
procedures to find parameter estimates

* The procedures need initial values and are
often sensitive for the initial values

* The interpretation of the parameters may
be difficult. Graphs showing the
relationship for different parameter values
will provide valuable help for the
interpretation

Spring 2010 © Erling Berge 2010 52
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Ch 6 Robust Regression

» Has been developed to work well in situations

where OLS breaks down. Where the OLS

assumptions are satisfied robust regression are

not as good as OLS, but not by very much

» Even if robust regression is better suited for those
who do not want to put much effort into testing the

assumptions, it is so far difficult to use

* Robust regression has focused on residuals with
heavy tails (many cases with high influence on

the regression)

Spring 2010 © Erling Berge 2010
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Regression of mortality on air pollution

1100,00—

OoLS:

o
900,00 — 808 (=] o
o

AGE-ADJUSTED MORTALITY/100K

° o & o Y=0184+
1000,00—] o Z o&> 797|n(alr poIIution)

800,00 —| Jsandose]r sq Linear = 0,023
Figure 6.1
Hamilton : : : : : : : :
0,00 1,00 2,00 3,00 4,00 5,00 6,00 7,00
LN_hc_pollution
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Robust regression of mortality on air pollution

AGE-ADJUSTED
(O MORTALITY/100K
LN_hc_pollution
Robust_Pred_Y

O Robust Prea

1100,00— LN_hc_pollution

o Robust Regression:
o Y=891.7+19.46In(air pollution)

1000,00—

8.4+

900,00+

n(air pollution)

R Sq Linear =0,023
800,00

Figure 6.2 ©
Hamilton

Spring 2010 © Erling Berge 2010 55

Robust regression and SPSS

« SPSS do not have a particular routine that
performs robust regression

* It can possibly be done within the Generalized
linear models procedure <but | have not tested it>

It can be done by weighted OLS regression, but
then it is required that we make the weight
functions and go through the iterations one by
one including computation of weights every time

» This procedure will be outlined below

Spring 2010 © Erling Berge 2010 56
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ROBUST AND RESISTANT

« RESISTANT methods are not affected by
small errors or changes in the sample data

« ROBUST methods are not affected by small
deviations from the assumptions of the model

» Most resistant estimators are also robust in
relation to the assumption about normally
distributed residuals

e OLS is neither ROBUST nor RESISTANT

Spring 2010 © Erling Berge 2010 57

Outliers is a problem for OLS

Outliers affect the estimates of

» Parameters

» Standard errors (standard deviation of parameters)
» Coefficient of determination

» Test statistics

« And many other statistics

Robust regression tries to protect against this
by giving less weight to such cases,
not by excluding them

Spring 2010 © Erling Berge 2010 58
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Protection against NON-NORMALE residuals

Robust methods can help when

* the tails in the distribution of the residuals
are heavy, i.e. when it is too many outliers
compared to the normal distribution

* Unusual X-values have leverage and may
cause problems

But for other causes of non-normality
robust methods will not help

Spring 2010 © Erling Berge 2010 59

Estimation methods for robust regression

» M-estimation (maximum likelihood) minimizes
a weighted sum of the residuals. This can be
approximated by the weighted least squares
method (WLS)

» R-estimation (based on rank) minimizes a sum
where a weighted rank is included. The
method is more difficult to use than M-
estimation

* L-estimation (based on quantiles) uses linear
functions of the sample order statistics
(quantiles)

Spring 2010 © Erling Berge 2010 60
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IRLS-

Iterated Reweighted Least Squares

M-estimation by means of IRLS needs

1.
2.

3.

4.

Start values from OLS. Save the residuals
Use OLS residuals to find weights. Larger
residuals gives less weight

Find new parameter values and residuals with
WLS

Go to step 2 and find new weights from the
new residuals, go on to step 3 and 4, until
changes in the parameters become small

Iteration: to repeat a sequence of operations

Spring 2010

© Erling Berge 2010 61

IRLS

IRLS is in theory equivalent to M-estimation
To use the method we need to compute
Scaled residuals, u;, and a

Weight function, w, ,that gives least weight

to the largest residuals

Spring 2010 © Erling Berge 2010 62
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Scaling of residuals |

« Scaled residual u; u = i
— s is the scale factor and e, residual S

» The scale factor in OLS is the RSS
estimate of the standard error of the Se = [—
residual: nb! s, is not resistant n—K

* A resistant alternative is based on
MAD, "median absolute deviation"

MAD = median | e, —median(e, ) |
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Scaling of residuals Il
MAD = median | e, —median(e, ) |
The scale factor (standard error of the distribution)

Using a resistant estimate will be

« s= MAD/ 0.6745 = 1.483MAD

and the scaled residual

e U;=[g/s]=(0.6745*¢;)/MAD

In a normal distribution s= MAD/ 0.6745 will estimate

the standard error correctly like s,
In case of non-normal errors s= MAD/ 0.6745 will be better.
This is a resistant estimate, s, is not resistant
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Weight functions |

» Properties is measured in relation to OLS
on normally distributed errors.

* The method should be “almost as good” as
OLS on normally distributed errors and
much better when the errors are non-
normal

* Properties are determined by a “calibration
constant” (c in the formulas)
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Weight functions I

* OLS-weights: w; =1 for all i

* Huber-weights: weights down when the scaled
residual is larger than c, c=1,345 gives 95% of
the efficiency of OLS on normally distributed
errors

* Tukey’s bi-weighted estimates get 95% of the
efficiency of OLS on normally distributed errors
by gradually weighting down scaled errors until
lul < c =4.685 and by dropping cases where
the residual is larger
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Huber-weights

w =1V|u |<c

C

U;
V = for alle
Tukey weights
2 2
u.
W, = 1—(—'} Viu |<c
C

W =0V|u|>cC
Vv = for alle

» Tukey weighting in IRLS is sensitive for start values of
the parameters (one may end up at local minima)
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Standard errors and tests in
IRLS

 The WLS program cannot estimate
standard errors and test statistics correctly
by IRLS

» A procedure that works is described by
Hamilton on page 198-199
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Use of Robust Estimation

* |[f OLS and Robust estimates are different it
means that outliers have influence on the OLS
results making them unreliable. Results cannot be
trusted

» Robust predicted values will better portray the
bulk of the data

» Robust residuals will be better at discovering
which cases are unusual

» Weights from the robust regression will show
which cases are outliers

 OLS and RR can support each other
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Mortality
regressed
on air
pollution

Effect of
high
leverage

Spring 2010

Mortality
regressed
on air
pollution
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untransformed data when two outliers are

AGE-ADJUSTED MORTALITY/100K

Fig 6.9 Hamilton: OLS and RR on
untransformed data
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Fig 6.10 Hamilton: OLS and RR on
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RR do not protect against
leverage

* RR with M-estimation protects against unusual y-
values (outliers) but not necessarily against
unusual x-values (leverage)

 Efforts to test and diagnose are still needed
(heteroscedasticity is still a problem for IRLS)

 Studies of the data and transformation to symmetry
will reduce the risk of problems appearing

* No method is “safe” if it is used without forethought
and diagnostic studies of data
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Robust Multippel Regresjon
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Multiple OLS regression with transformed variables:
effect of transformation
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OLS with backward elimination

gives

Dependent Variable: B Std. t Sig.
AGE-ADJUSTED MORTALITY/100K Error

(Constant) 986,261 | 82,674 | 11,929 | ,000
LN_hc_pollution 17,469 | 4,636| 3,768| ,000
AVG. YEARLY PRECIP. INCHES 2,352 ,640| 3,677 | ,001
AVG. JANUARY TEMPERATURE, F -2,132 ,504 | -4,228| ,000
MEDIAN EDUCATION OF POP 25+ -17,958| 6,204 | -2,895| ,005
SQRT_pct_non_white 27,335| 4,398| 6,215| ,000

» Robust regression gives predicted y:
b Y: 1001.8+17.77X1|+2.32X2|'2.11X3I'19.1X4|+26.2X5|
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Multiple OLS regression with transformed variables

Leverage plot of
residual from
mortality (y) and
residual of
In_air_pollution (x)
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Four estimates of the relationship

mortality — air pollution

Effect of air pollution

OLS |[Robust| ¢ Note that in RR the
1variable |7.97 |19.46 bivariate regression
: comes pretty close to
5 variables | 17.47 |17.77 the result of the

multivariate regression
* |n the five-variable model there are new cases
with influence on the line of regression

* Removing the 5 cases that have the highest
leverage parameter (h;) do not give substantial
changes in the coefficients
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Robust Regression vs
Bounded Influence Regression

» Robust Regression protect against the
effect of outliers (unusual y-values) if
these do not go together with unusual x-
values

» Bounded Influence Regression is
designed to protect against influence from
unusual combinations of x-values
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Bl - Bounded Influence
Regression

» Bl-methods are made to limit the influence
of high leverage cases (large h; = high
leverage)

» The simplest way of doing this is to modify
the Huber-weights or Tukey-weights in the
IRLS procedure for RR (robust regression)
with a factor based on the leverage statistic
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Bounded influence: modification of weights

« Expand the weight function with a weight based
on the leverage statistic h;

e W, =1 if  h<cH

o wH. =(cH/ h) if h, > cH

» cHis often set to the 90% percentile in the
distribution of h;

« Then the IRSL weight becomes w, wH, where w; is
either the Tukey- or Huber-weight that changes
from iteration to iteration while w", is constant
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Bounded influence as a diagnostic
tool

e Estimation of standard errors and test
statistics becomes even more complicated
than for the M-estimators mentioned above

* We can use Bl estimates as a descriptive
tool to check up on other estimates

* One (somewhat) extreme example: PCB
pollution in river mouths in 1984 and 1985
(Hamilton table 6.4)
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Fig 6.15 and 6.16 Hamilton
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Conclusions

* When data have many outliers robust methods will have
better properties than OLS

— They are more effective and give more accurate confidence intervals
and tests of significance

* Robust regression can be used as a diagnostic tool

— If OLS and RR agree we can have more confidence in the
OLS results

— If they disagree we will
» Know that a problem exist

» Have a model that fits the data better and identifies the
outliers better
* Robust methods does not protect against problems that are
due to curvilinear or non-linear models, heteroscedasticity,
and autocorrelation
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